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Abstract

The Fisher distribution is the analogue on the sphere of

the isotropic bivariate normal distribution in the plane. The

'I purpose of this paper is to propose and analyze a spherical

analogue of the general bivariate normal distribution. Estim-

ation, hypothesis testing and confidence regions are also

discussed.
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Introduction.

The Fishcr distribution on the sphere is the analogue of

the isotropic bivariate normal, that is the Fisher distribution

has circular contours of constant probability. However, in some

problems it is desirable to have a more general distribution on

the sphere with oval contours in order to provide an analogue of

the general bivariate normal distribution. The purpose of this

paper is to construct a suitable spherical analogue of the general

bivariate normal distribution (denoted as the FB distribution]5

below).

After setting up our notation in Section 2, we define the

8-parameter Fisher-Bingham distribution (FB8) in Section 3. The

FB5 distribution will appear as a 5-parameter sub-family of FB8.

The limiting normal behaviour of FB5 for large concentration and

other motivating properties of FB5 are discussed in Sections 4 and

6.

Sufficient statistics for the FB5 distribution are described

it Section 5, estimation of the parameters in Section 8, and a

confidence region for the mean direction in Section 10. Several

hypothesis tests of interest are discussed in Section 9.

An example to illustrate the use of the use of the F15

distribution is given in Section 11. Analogues of the Fisher-

Dingham distribution in other dimensions are briefly mentioned in

Section 12.

Although the primary emphasis in this paper is on the F35

distribution, properties which applying to other sub-familles of

7fs will also be mentioned where relevant.
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2. Notation

3 2 2 2
Let xcR : x'x 1) denote the unit

sphere in R 3. We can write x in polar coordinates (e,)

defined by

•x a Cose, a2 a sincos4, x3 N sin6sino (2.1)

where O6g6s, 0*;'2t. If dx denotes Lebesgue measure on

Nh3 then in polar coordinates dx - sin OdO do. Throughout this

paper we shall define distributions on n3 in terms of densities

with respect to dx.

4A useful way to plot spherical data is given by La2bert's

equal area pojection (see e.6. Mardia, 1972, p.215) defined by

Sa Pcos , 3  sin (2.2)

i where p a 2 sin (0/2) . 0c<2.

* For any matrix A(nvp), let A' denote the transpose Of

A, a(j)(nxl)the jth column of A,j-1,...,p, and

a (pxl) the ith row of A (written as a column vector),

An orthogonal matrix "(3x3) of positive determinant depends

on 3 polar coordinates. Let us denote by r - r(*,c) the

matrix defined by

lr - [ ) cos 6(2) S int1(3), -tint 2(2) • cost (3)

(2.3)

where

C5#-Sin* 0

- ein* cosn cost Cs -simvi (2.4)

si*sin, % Cos* Sinn co5

and Ojgv , 0-v,Cc2v

We next define a concept we shall ueed later in the paper.

Given a non-sero vector u(31) and a symsetric matrix A, let

-- A.uuuuUu~~uu~muuii
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E - E(uA) be a (3.3) orthogo,.al matrix such that if v - E'u

and B E ['AX, then

v 2  v 0 2 3 .0, (2.5)

VIa 0 I b2 2 b3 3 • (2.6)

Call the columns of I the constrained eiienvectors of (UA).

Note that Cl) is proportional to u whereas a and e
M .(2) t3

diagonalize A "as much as possible" subject to being constrained

by a(1)" Also note that a(1) defines a vector (whose sign

is deterzined by (2.6)), whereas a and ( only define axes
.(2) f(3) 02 eieae

(whose order is dtterzinod by (2.6)). The constrained eigenvectors

can als: be vieved as the eigenvectors after projecting A onto

the subspace orthogonal to u (see Kato, 1966, pp 61-62).

It is also convenient to sut=rize (u,A) in terms of the

size and shape quantities,

r1 v, juj and r2 a b22-b33, (2.7)

respectively, which are invariant under orthogonal changes of the

coordinate system.

For computational purposes, the matrix E is most easily

obtained by the following two-step procedure. First choose an

orthogonal matrix 8 to rotate u to the north pole

(1,0.0)'. (In the polar coordinates of (2.1) vith

H for T. choose # and il so that h(1) ; here C is

arbitrary, so for simplicity we can take C a 0.) Then set

va g'i, and C aB'AS. Secondly, choose a rotation R about

the north pole to diagonalize CL , where

is the lover (2W2) submatrix of C. (In the polar coordinates of



(2.1) vith K for T, take i4 0, i 1 0 and choose L to

satisfy

tan 2- 2c 2 3 1(c 2 2 -c 3 3 ),

ensurinZ that (2.6) also holds.) Then £ a HK.

Note that even after the first sta&e the size and shape

have simple interpretations in terms of v and C. Letting

L and I denote the eigenvalues of C we have

r 1 1 r 2  -1 2 (2.8)

* "3. The Fisher-Dingha: distribution.

Define a distribution on 3 by the density

4W f(x) - ex , -. Ox X 2  •(3.1)

U2 3 C,)
- jm2

!. We shal: call (3.1) the Fisher-Binghar distribution since the

first factor is proportional to a Fisher density and the second

* to a Bingham density. The 8 parameters of (3.1) are c.O, real-

valued C a unit vector v, and an orthogonal matrix

: " " [-(1)"!(2) _()

We shall elbo use the name TB8  for the full family (3.1).

Note that the constraint 3 3 ) a 1 implies that a
-1 i

term £(Y X1 )z? in the exponent of (3.1) vould be redundant in

the specification of the density.

The family of FB8 distributions is closed under orthogonal

transformatious. If x is a random vector from Ss(WC, a 2,9,vT)

and 2 is orthogonal, then U'x comes from g(c,29, 3'l 'r).

Note that the transformation xi' N'x can be thought of as

changing the frame of reference, vith the coordinate axes in the

nov frame given by the columns of H.



Several interesting distributions appear as special cases

of F e asides the uniform, Fisher and Bingham distributions

themselves, we also have the following families, all of which are

also closed under orthogonal transformations.

(a) FB (C,ekV). Put v - Y(1) so that the Fisher axis

lines up vith one of the Bingham axes. Then the number of

parameters is reduced by 2 to 6 parameters.

(b) FB' (CE,7). Put v a Y(1) and set E a a say, with
.0 - 2 3a

00. This distribution is a 5-parameter sub-family of FB. and
o

is proposed here as a spherical analogue of the bivariate normal

distribution. The justification for this proposal will be given

* in Section 6.

(c) FBh 1 ( (1)). Put V ( 1 ) and set £2 3 , say.

Again, FB4 is a sub-family of FB6 but with very different behaviour

from FB Note that since we cannot distinguish between y(2) and

L(3 ) here. F3B is only a 4-parameter family. If £-3c , then

the vsde of the FB density is a small circle whose center lies

along the Y(I) axis. This distribution was introduced and studied

by Bingham and Mardia (1978).

All of the above families of distributions are closed under

arbitrary rotations of the coordinate system. The inclusion

relationships between them are summarized in Figure 1.

Fisher " F 6

uniform FS8

\Zingham

Figure 1.

II' I . . ..
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The Fisher-Bingham distribution was first introduced in

Mardia (1975, p.352) on the sphere R ,p . It also forms oneP

of a hierarchy of distributions considered in Beran (1979).

From Beran's point of view, the Fisher distribution contains an

arbitrary linear function of x in the exponent of the density,

and FB8 contains an arbitrary linear and quadratic function of

x. The other distributions in the hierarchy include higher order

polynomials in the exponent of the density. An extension of FB8 to a

Stiefel manifold was proposed in Mardia and Khatri (1977).

As noted in Mardia anC Khatri (1975), the FB8 distribution

can be obtained by conditioning a trivariate normal distribution

with arbitrary mean vector and covariance matrix (a 9-parameter

family) to lie on the unit sphere.

Unfortunately, statistical work with the full FB distribution

has been hampered by difficulties in estimating and interpreting

j the parameters (but see de Veal, 1979). However, as we show in

this paper, these difficulties do not apply to the F3 distribution.
5

-For FB the parameters have important and natural interpretations,

end estimation is quite feasible.

4. Limiting behaviour of FB6 for large concentration.

When the 7S6 distribution is highly concentrated about a point,

it is well-approximated by a bivariate normal distribution. This

result generalizes the vell-known property of the Fisher distribution

(see e.S. Mardis, 1972, p.246), where an isotropic bivariate normal

appears. Details about the closeness of this approximation in the

Fisher case can be found in Kent (1978).

For convenience suppose that the orientation matrix r equals

<Li....



I, the identify matrix. Then in the polar coordinates (2.1),

the FB6 density in (3.1) takes the form

g(6,0)- exp(Cose06 2 sin % Cos2* * 03 sin san2*) . (4.1)

Theorem 4.1. Let z- FR6 (or, 8l,12, 1 ) and let the parameters

K.6 1'12 vary in such a way that

h, /' . d2 , a3/ d3  with -wcd 3 d2 1 . (4.2)

Then as K- 9

Lisin ( -2 d 3)

(4.3)

where r denotes asymptotically equal in distribution and

denotes convergence in distribution.

* Proof. Using the Taylor series expansions

cos e - 162 ... , sine - e . (4.4)

for 0 small and using (4.2) we see that (4.1) is approximately

proportional to

r2 2 2 2 2
exp{-jgL6 -2d 20 cos #2 i 45

ex{|[ 2 *-d6sn*), (4.5)

which is the form of the limiting density in (4.3). To make this

argument rigorous, it is merely necessary to show that

(a) the approximation (4.5) is adequate for IeGICK- and

(b) the probability mas associated with 101:-K1 is negligible.

The details are straightforvard.

Similarly, it is straightforvard to ahoy that the two

expressions an the left-hand side of (4.3) are asymptotically equal

in distribution. D
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Corollary 4.1. Let x -FB ,I). If r and B vary in

such a way that

6/i-d with Osd ,

then

si "i01 (1+2d)

5. Sufficient statistics

The FB distribution forms a canonical exponential family in
f8

its 8 parameters. If we write a - Kv and - . diag(O,2 E

then

fCx) , exp{cl'x + x'.X} (5.1)

and a possible choice for the natural parameter vector is

'(l 2 "1'2'3' '12' "n13' '22' 7s23' 733P '  (5.2)

Given an (nx3) data matrix X from the FB8 distribution,

the corresponding sufficient statistic is

in 2
S l(xilX 2,xi3 xi2, ii3' 'i2,  i2'i3' xi3)

(5.3)

)bte that t holds the information contained in the sample mean vector

and the sample dispersion matrix about 0,

z xi I Xi .! (5.4)
- -~ * n .. 12

Unfortunately, the other families described above (FB4,FB5 and F56)

are not canonical exponential families, but instead from curved

exponential families. In each case the parameter space has fever

than 8 dimensions, but the sinivml sufficient statistic is still

given by (5.3).



9

These remarks about FB,,FB5 and FB6 apply only when all

4 the para.meters are unknovn. A neater situation arises if we

suppose that the mean direction v (and also possibly the

concentration K) is knovn. With this knowledge FB~. FB and

FB6 (and also FBE) now become canonical exponential fa=ilies.

4For definiteness we consider FB After rotating the

coordinate system so that v - y becomes equal to (1,0,0)' the

density is proportional to

f(x) -exp{'x, * 6 .; -x )2 2 2 x 3) (5.5)
1 l2 3 2 2

or in polar coordinates,

g(e,o) ae;7,cos 6 # 6 sin 2e cos2(-A)) , (5.6)

where

61 -6cos 2Y , 62 a 6sin 2Y . (5.7)

The parameter Xc[0,2n) describes the direction of the major

axis - see Section 6. Then the natural parameter and sufficient

statistic are given by
in 2 x2

(KSi P and xilX2 1i3' 2xi2x 3)' . (5.8)

If sc is alsoknon., the natural parameter and sufficient

statistic become slightly simpler; namely

(61,962)' and N I 2 2 (2 (X2-xi3,2x i2'i)) (5.9)

6. Properties of the FB distribution.
5

The FS5 density was defined in Section 3 by

4 WL ( 2 )A 3xp

As ye shall see below the parameters can be described as

follovs: rvO is the concentration, 010 describe the ovalness,
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1 is the mean direction or pole, '(2) is the major axis, and

(3) is the minor axis. Note that y( 2 ) and Y(3) are determined

only up to sign, so that they do indeed define axes rather than

directions.

If we rotate to the frame of reference defined by the coiumns

of r, the density f(x) takes a particularly simple form. For

this reason we shall call this transform-ation, x$ x* - "'x,

the transformation to the population standard frame of reference. The

density for x* takes the form

f(*) exp{.zx . -(x A. -

1 2 3

or in polar coordinates

* 2.g e,¢) exp{ cosS + c sin e cos..

A sanple analogue to the population standard frane will be

defined in Section 8.

As stated in the introduction, the FB5 distribution is

proposed here as a spherical analogue of the bivariate normal

distribution. The following properties show why this is a sensible

proposal. We need to suppose here that 2.cc to ensure the correct

behaviour.

(a) FB5 and the bivariate normal are both 5-parameter families.

(b) The contours of constant probability near the pole y(I)

are approximately ellipses with major and minor axes Y(2)

and Y(3)v respectively. (This property follows easily

from (4.4).)

(c) The geometric average of S(e,4) over circles of constant

latitude is proportional to a Fisher density, that is,
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12 lo g(9,)d4 o Kcose . constant.

0

Thus, in this sense FB is a natural extension of the Fisher
!5

distribution.

(d) As 0 goes from 0 to v for fixed 6, g(6,4) decreases

monotonically. Thus g(E,4) is unimodal on all great circles

S through the pole.

A (e) For large values of the concentration parameter K, FB is
5

Iapproximately the same as a bivariate normal distribution
with mean () and major and minor axes Y(2) and Y(3)

resptctively. (See Corolliry 4.1.)

Note that the larger FB6 family is not a suitable spherical

analogue of the general bivariate normal distribution because it

has one too many parameters. In Theorem 4.1 we saw that this

"extrd'parameter is "asymptotically unidentifiable" for large

concentration.

Hence we have introduced a further constraint (52 - B 3) to

define the FB5 family. To some extent this constraint is arbitrary

(in fact a different constraint was proposed in Kent, 1980). However,

the constraint used here does have some theoretically attractive

properties ((c) and (d) above). Moreover, as we shall see in the

next section, with this definition of FB5 the normalization constant

takes a reasonably tractable form.

7. Moments of FB.

So far we have not dealt vith the normalization constant of

the FB5 distribution,

2(1,B) " exp{ cosO + sin2 a cos2f)sinS d$ do. (7.1)

1
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Using the results

(snv a (Cost-) b d e P(A41 (7.2

(Abramowitz and Stegun, 1972, (6.2.1), p.256) where B(,') is

the beta function, and

[ eKCOSO

"1 sin 2 d6 - u(v q)(p,) - V I (.:) (7.3)
-oV

(Abramowitz and Stegun, 1972, (9.6.18), p.3 76) where I (K) is

Stne modified Bessel function, we can expand c(K,E) in a series

c(,,S) 2- r(k.) e2k(j 2k-I () ((7.4)" T'(k*l) (') 2k-! "

kwo

Sirce sequences of Bessel functions can be quickly and easily

cc-puted by the method of Amos (1974), formula (7.4) provides a

quick and simple method of calculating c(K,e). Note that

c(o,o) - 4r, the surface area of the sphere, and

c(c,o) - 41. "1 sinh K

the normalizing constant for the Fisher distribution.

For large K (with 26/Kl fixed) we have from Corollary

4.1 the asymptotic formula

-K -1/2S(,E) a 2re'( (,-26) (,c.20)]-/2 (7.5)

Consider a random vector x-FB (a,,I). Differentiating
- 5

(7.1) under the integral sign and writing c = c(K,6), c a c(sCB)/;OC,

etc., we find
Ex C2EXI. C /c
Ex1 " €/c , 2x

2 2 
(7.6)

and hence since x 1,X +a~2x ) =c/
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Lx- - (c-c *cc (77
(7.7)

2
Ex3 (c- - c )/2c.

For later use write

- Ix1  and Ex j- 1.2.3. (7.8)

By s)zetry, most of the other moments of interest equal 0,

E(x2) - E(x3) - O, (7.9)

E(x2x3) - 0, (7.10)

E(N x 2) - Mx O 0. (7.11)

8. Moment Estimation for FB..

Let xl,...'x be a sa=ple frc FB(e,). The standard_n 5

way to estimate the parameters of FB5 is to use maxinmu likelihood

estimates i, ,T. However, it does not seem possible to obtain

" explicit expressions for the m.1.e.s, so iterative methods must

be used to find them.

In this section we propose simpler estimates which we call

the moment estimates cs,r for the parameters of FB5 . They have

the following properties.

(a) The moment estimates are consistent estimates of the

true parameters and hence provide suitable starting values

for maximum likelihood iteration.

(b) The orientation matrix r can be calculated explicitly.

(c) If either the eccentricity 26/K is small (the usual case

in practice) or if c is large, then the moent estimates

are close to the m.l.e.s.

(d) If the data is highly concentrated, the concentration

parameters xB can also be calculated explicitly.
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More specifically the moment estimates are defined as

follows. Let x and S be the sample mean vector and the

sample dispersion matrix about 0 as in (5.4). Then, in the

terminology of Section 2, r is defined to be the matrix of

constrained eigenvectors for (xS). Further, letting

r , ]xl and r2  denote the size and shape quantities for

*(x,S), the estimates a., of concentration parameters art

determined implicitly by the equations
.4

I r 1 -c /c a 0, r 2 -c £ /c = 0. (6.1)

4For large c, the use of (7.5) leads to the explicit soluticn

"- (2-2r-r) (2 2r r2( .2= 12-2-"r 21r 12 12(8.2)

W a j{12-2rI-r 2) 1 - (2-2rlr 2 ) .

The orientation matrix T has been chosen so that for x*

the sample analogues of (7.9)-(7.10) (but not (7.11))vill hold.

For this reason we shall term the transformation x- x* -.;Ix

the transformation to the sample standard frame of reference.

The rationale behind the moment estimate V is as follows.

The first column y(1 ) is the mean direction of the sample, vhich

is also the m.l.e. of the mean direction under a Fisher distribution.

If the eccentricity 20/K is not too large (which is the most

important case in practice), then y11) will also be close to the

=J.e. of the mean direction for FA . Further, if the true mean direction

R(1)o(1 vere known, then (7.3)-(7.4) would ensure that .(2)

and w3) would be the m.l.e.s of the major and minor axes, respectively.

Hence if 20/K is not too large, the moment estismates should be

nearly as efficient as the maxlmum likelihood estimates.
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A similar situation arises for larSe K when IM5 is close

to a bivariste normal. Then the moment estimates and m.l.e.s for

FI will both be close to the corresponding u.l.e.s for the

bivariste normal.

9. Some hypothesis tests.

Qin this section ye describe several large-sample hypothesis

tests of interest. All of these tests can be carried out using

the following general result.

Thearc-_ 9.1. Consider n independent identically distributed

observations from a model H vith parameters (-,) of dimensions

p and q respectively, and considcr a null hypothesis H : ).a O.

Suppose that under H, the model forms a canonical exponential

family for r vith minimal sufficient statistic u, and that under

N I (vith - known) the model forms a canonical exponential family

for A vith mininal sufficient statistic v. Define lao's score

statistic by

- Cv-E(tiu))' Var(vju) "I Cv-I(vlu)) , (9.1)

where all moments are calculated under R with Is: (w being the

u.l.a. of r under No).
0

Then asymptotically as the sample site a-

2

WU , (9.2)

and further Wu is asymptotically equivalent to the likelihood

ratio statistic -2 logL for 8YS we reject Ne if W3 is too large.

Pof. This result is a special case of a general result in Con and

linkley (1974). p.324, equation after (5.6). See also Sao (1973), p.418.

0
Note that the score statistic V5 is Usually simpler to

j calculate than the likelihood ratio statistic because only a

parametric model under Nee md be fitt&4. Sase hypothesis tests

•bieb fit sato this frmneuo will mw be described.
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(a) H : Fisher vs INI : FS5

A Fisher distribution with concentration parameter K and

mean direction v forms a canonical exponential family with

natural parameters (Kv,%Kv2 , v 3 ) and sufficient statistic

u a nzx. The m.l.e.s satisfy

nI.K/J 1 2 K I X r (9.3)
-1

where r 1 -flu 1z 11 is the resultant length, also used in (8.1).

Now let 8 be an orthogonal matrix which depends on the data only

through v, and whose first column is given by h(1) * v. Let

!. H' * lThen from (5.9),vith a K and

A(1 ) - assumed known, the model under 51 forms a canonical exponential

"faily with sufficient statistics
IV(2 2 11 (9.4)

1i. ci2-y13) VW2  2 113 1

Nov the assumption that the z i  come from a Fisher distribution

7(sC.v) is equivalent to the assumption that the 7i  come from

7(0,(l,O,O)'). further, for a random vector y-(O,(l.,O,)'). we

have by sylmetry

y2 2
2(Y-73) 3 i703) a 0

23 (y2-3) -1(y2 y3) 0

MCy 3y2 ) 2 * &(Y9 2y3) .0 , p.2-

and we he by (7.2) ad (7.3).

2 2 23 a a
B(7-73) - (47y 3) e(2) %()Isp (a).

enss e test statistic (9.1) takes the for
* ~(er/2)22p(I) (

•~~~~~ - 2.,; -- :)x ,s
X21
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Using the notation of Section 2, it is easy to check that

2 * W2 equals the squared shape quantity r 2for (;,S). In

1 w2  qusr 2  fr(,

particular it is clear that the statistic W does not depend

on the arbitrariness in the choice of the second and third columns

of H.

In practice this test might be used in the folloving situation.

Given a set of spherical data, an experimenter might first look
I

for directionality by testing 2 : uniform vs HI: Fisher (the

Rayleigh test). If this null hypothesis is rejected he might

assess the circular sy=ietry of the data about the pole by usin;

the test described here.

For large concentration, this test reduces to a test of

sphericity for the bivariate normal distribution; see for exa=;le

Maordia, Kent, and Bibby (1979) p. 134.

" (b) H : Fisher vs HI: FB .

As in (a), this is a goodness-of-fit test for the Fisher

distribution, but here with a sore general alternative in mind.

The calculations are similar to those in (a) but somewhat more

involved. Details are given in lardia and Holmes (1980).

The analogous test on the circle was given by Cox (1975); see

also Cox and Barndorff-Nielseu (1979), p.
2 9 1 .

c) 8o: ingham vs al: n3*.
This test is included here because it fits the assumptions

of Theorem 9.1, but the epplication of this test is somewhat

different from (a) and (b). Suppose an ezprimenter has data to

which he would like to fit a linghm distribution. The data are

suspected to be but sot kLomw to be antipodally symetric. There

are two ways to proceed in this situation.

M First use a 2a7l0i8h test ( S 2 to test omtitom v-A,3).__-.____L_____
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Fisher. If uniformity is accepted, then antipodal syucetry car, be

presumed and a Bingham distribution can be fitted.

(ii) First fit a Bingham distribution, and then assess the goodness-

of-fit by using the test of this section. This latter approach seems

more suitable when the data is known at the outset not to be

uniformly distributed.

Under Ho, S, the sample dispersion matrix about 0, is0

'N sufficient for the parameters. If x comes from a Bingham

distribution, we have by symmetry

E(x) = 0 , E(xixjxk) " 0, i,j,k = 1,2,3

so that

'W E(;) -0, E(x;S) - 0

Further, since the m.l.e.s of the Bingham parameters are chosen

so that E(xx') - S, we have

Var(;xS) - Var(;) S. Hence the score statistic takes

the form

1- 2

.ote that when the data is uniformly distributed, S 1 1, so

that (9.6) reduces to the Rayleigh test statistic.

10. A confidence interval for the man direction.

Let xl..., be a sample from F 3$(,B,r). First, transform

to the population standard frame (see Section 6) y i $a

so that the yi form a sample from FS (,B,Z). Then by the central

limit theorem and (7.6)-(7.11) we see that the sample man

y n 7 is asymptotically normally distributed with manvector

(v.oo)' and Covariance matrix a 1 di 2 (ii.O2.2).
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The sample mean direction for the yi (which is &'so the

mment esti.ce of the true mean direction of the yi) is defined

by " 1I *.Consider the tWo Coordinates (f2 1,"3 1)' of

! (I)* Then by a general result on transformations (see. e.g. Rao,

S1973. p. 387). (;21,;31) is also asymptotically normally

I

• " distributed,

".',2 "0 3

: Hence, an asymptotic lO0(l-a)2 probability region about the

mean direction of FS 3( ,,) is given in population standard

coordinates by the ellipse-like region

- 2-2 ,* 2 / 2 2

vhere X2;* denotes the upper a critical value of the x2
2

distribution.

I Inverting (10.1) provides a confidence region for the true

mean direction about the sample man direction. More specifically,

suppose zX1 .... oX come from FS5(oc,5,T) with true mean direction

v a Y(1)" Let r be the moment estimate of r (see Section 7) and

* transform to the sample standard frame, z * T ' 1, - lo,...,n,

- and let v* a r'v. Then an asymptotic confidence region for v*

is defined by the ellipse-like region on the sphere

a 2(V62 /02 * V*2/a2) X2 (10.2)

Of sourse, in practice po &nd a2 viii mot be known, but must

be replaced by any consistent estimates. One possibility is to

estimate a and I mW then e (7.)-?.?). BWever, a simpler

tecbnique is to Just use the sample moments
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V n 1  
1  " n 'l  and ;2 . -1 J!,2 (10.3)

res'ectively.

Note that in moving from (10.1) to (10.2) we have switched

from a frame of reference about the vue mean direction to a frame

about the sample mean direction. Uowcvar, since these two points

lie within 0(n"1) of one another in probability, the complications

arising from this switch are negligible and (10.2) remains

" .* asymptotically valid.

, .When using the equal-area projection (2.2) (in the sample

standard frame) and when using the estimates (10.3), a confidence

I region as.-m-pttically equivalent to (10.2) is given by
'2. 2.-2 2.'2. 2 ]104

{2s 3 )  2 n • 2 3 st3 )  X2 ;a ).

11. ExarPle.

Creer, Irving and Nairn (1959) measured directions of magnetism

* at nu34 sites in the Great Whin Sill. Their data is sumarized

in Table 1, colucn (b) of that paper, pp.
311-312 (excluding sites

32 and 34. Their us* of declination (D) and inclination (1) is

related to our use of polar coordinates in (2.1) by e - 90 + ,

* - 360 - D. [Change program accordinly).

The summary statistics are given by

0 3.045 -0.075 0.01C7

-0.939 5 1..073 0.921 -0.1221

.0.131 0.01 -0.122 0.034

from which v find r1 - 0.971 . r2 a 0.0229.

The moment and maximan likelihood estimates of location are

both given to three deciuml places by
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I

0085 -0.979 0. 15

-0. * 987 -0.108 -0.117

0.34 -0.172 -0.976

and the estimates of concentration by

4 - 62.16 6 a 9.27 (exact moment)

41.76 0 a 8.37 (asymptotic moment)

- 62.16 8 - 9.28 (maximum likelihood).

The data and a 952 confidence region for the mean direction

based on (10.2) and (10.3) are given in Figure 2, plotted using

the equal-area projection of (2.2) in the sample standard franc.

The hypothesis test of Section 9(b) and the correspondinZ

likelihood ratio test yield the values

- 5.96 and -2logL a 6.55.*1 u

2
Since the upper 52 critical value of X is 5.99, both

statistics show moderate evidence of a departure from a Fishere

*distribution.

In this example an alternative approach was used by Creer et.al.

They managed to transform the data to approximate circular symmetry

* and then to use statistical techniques applicable to the Fisher

distribution.

12. Analogues in other dimensions.

Much of the theory in this paper extends, at least in principle,

to other dimensions. The analogue of the full Fisher lingha

family on the unit sphere in Rp , p,2, can be written in the

general form (2.1) vith the sumation from 2 to 3 replaced by a

summation from 2 to p (as in Beran, 1979).

An analogue of n5 can be obtained by introducing the constraint

.0.
j-2.... ....
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On the circle, p-2, this analoguesof FB is no more general than
5

the von Mises distribution itself. For general p>3, provided

Is! < 4/2, j- 2 ,...,p, properties analogous to those in Sections

4-6 are valid. When p>3, moment estimation still can be carried

out, although the normalization constant seems to become more

complicated as the dimension increases.

:4

,is
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Figure__2:_PlotoftheGreatWhinSilldatausing____equal-area

prjcto in t1 a *sadr rmada92cniec

1S

• 1

pr ojetoi h .ml. .a..d.aeada 5 oniec
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